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Outline

• Jets and jet substructure
– Resolve QCD radiations with jet observables
– Power counting soft and collinear radiations
– The need of resummation

• Soft-collinear effective theory (SCET)
– Factorization theorem
– Renormalization group evolution
– Medium modification by Glauber interactions

• Conclusions
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Jets and QCD

• Jets are manifestation of the
underlying colored partons

• Jet clustering algorithms merge the
pair of particles with the shortest
distance until the angular cutoff R

• the distance measure dij between
particles i and j is defined by

dij = min(p2β
ti , p

2β
tj )∆R2

ij/R2

kT anti kT

β = 1: kT β = 0, C/A β = −1, anti-kT
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QCD and effective field theory

Systematically decompose QCD radiations
• Resolve jets at different energy scales

• To zeroth order, the jet kinematics corresponds to the parton kinematics
• A jet is not simply a parton but with sequential branching and splitting
• One needs to measure substructure to study the jet formation mechanism

• The dominant contributions to jet observables come from radiations which are

• Energetic, collinear
• Soft, ubiquitous (not necessarily collinear)

• Power counting by systematically defining collinearity and softness

• It is like dimensional analysis which is the first thing a physicist should do
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Jet shape, a classic jet substructure observable(Ellis, Kunszt, Soper)

R

r ΨJ(r,R) =

∑

ri<r ET i
∑

ri<R ET i

〈Ψ〉 =
1

NJ

NJ
∑

J

ΨJ(r,R)

ψ(r, R) =
d〈Ψ〉

dr

• Jet shapes probe the averaged energy
distribution inside a jet

• The infrared structure of QCD induces
Sudakov logarithms

• Fixed order calculation breaks down at small r

• Large logarithms of the form
αn

s logm r/R (m ≤ 2n) need to be resummed
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Jet mass, the simplest and most important substructure observable

p p

nJ

γ

R

m2 =
(

∑

i∈J

pi

)2

=
(

pc + ps

)2

≈ p2
c + 2pc · ps

≈ p2
c + 2EJnJ · ps

m

dσ
dm

fixed order

resummed

resummed + hadronization

ΛQCD

peak

tail

• Jet mass is a soft radiation sensitive
jet substructure observable

• The infrared structure of QCD
induces Sudakov logarithms

• Fixed order calculation breaks down
at small jet mass m

• Large logarithms of the form

1

m
αi

s

(

logj m

EJ
or logj R

)

, j ≤ 2i − 1

need to be resummed

• Hadronization affects the position of
the peak at small m

• Resummation of logR is crucial

especially for jets with small radii
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Resummation precision

p p

γ

global

p p

γ

nonglobal

1

r
αi

s

(

logj r

R

)

or
1

m
αi

s

(

logj m

EJ
, logj R

)

, j ≤ 2i − 1

• All-order resummation: i = 1, . . .∞

• Infrared structure of QCD allows the all-order
resummation of logarithmically enhanced terms
without calculating diagrams at all orders

• leading-logarithmic (LL) accuracy: j = 2i − 1
• next-to-leading-logarithmic (NLL) accuracy:

j = 2i − 1, 2i − 2
• . . .

• Nonglobal logs and clustering logs appear at
NNLL

• Resummation is still an open question
• Groomed jet observable is a way out
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Resummation and effective field theory

THE BASIC IDEA
• Logarithms of scale ratios appear in perturbative calculations

• Logarithms become large when scales become hierarchical

log
r

R
= log

scale 1

scale 2
, log

m

EJ
, logR = log

scale 3

scale 4

• In effective field theories, logarithms are resummed using renormalization group
evolution between characteristic scales

• To resum all the logarithms we need to identify all the relevant scales in EFT
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Soft-Collinear Effective Theory (SCET)

• Effective field theory techniques are most useful when
there is clear scale separation

• SCET separates physical degrees of freedom in QCD by a
systematic expansion in power counting

• Match SCET with QCD at the hard scale by
integrating out the hard modes

• Integrating out the off-shell modes gives collinear
Wilson lines which describe the collinear radiation

• The soft sector is described by soft Wilson lines along
the jet directions

QCD

SCET

Soft cross talk

n n̄

• At leading power, soft-collinear decoupling holds in the Lagrangian and it leads to
the factorization of cross sections
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Power counting in SCET

• The scaling of modes in lightcone coordinates
(n̄ · p, n · p, p⊥) where n = (1, 0, 0, 1) and
n̄ = (1, 0, 0,−1):

ph : EJ(1, 1, 1), pc : EJ(1, λ2, λ) andps : Es(1, R2,R)

• EJ is the hard scale which is the energy of the jet
• λ is the power counting parameter (λ ≈ m/EJ )
• EJλ is the jet scale which is significantly lower

than EJ

• The relevant soft scales depend on observables

• QCD = O(λ0) +O(λ1) + · · · in SCET

• Leading-power contribution in SCET is a very
good approximation

p+

p−

soft

collinear

hard

ultrasoft

SCETII

SCETI
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Power counting jet observables

Determine how collinear and soft radiations contribute
• Jet shapes have dominant contributions from the collinear sector

Ψ(r) =
E<r

c + E<r
s

E<R
c + E<R

s
=

E<r
c

E<R
c

+O(λ)

• Soft contributions are power suppressed

• Jet mass is sensitive to c-soft modes: ultrasoft modes constrained inside jets

m2 = (pc + ps)
2 ≈ p2

c + 2EJnJ · ps ≈ E2
Jλ

2, Es = EJ
λ2

R2
=

m2

EJR2

pc : EJ(1, λ2, λ) andps : Es(1, R2,R)

• For high pT and narrow jets, power corrections are small and the leading power
contribution is a very good approximation of the full QCD result

Y.-T. Chien Jet Theory 11 / 27



Jet Mass Soft Collinear Effective Theory Medium interactions Conclusions

Factorization theorem for jet shapes(Chien et al)

• Without loss of generality, we demonstrate the calculation in e+e− collisions since
the initial state radiation in proton collisions contributes as power corrections

Er

J≥2

Λ

J1pT , y

r

R

• The factorization theorem for the differential cross
section of the production of N jets with pT i, yi, the
energy Er inside the cone of size r in one jet, and an
energy cutoff Λ outside all the jets is the following,

dσ

dpT idyidEr
= H(pT i, yi, µ)J

ω1
1 (Er, µ)J

ω2
2 (µ) . . . S1,2,...(Λ, µ)

• For the differential jet rate (without measuring Er)

dσ

dpT idyi
= H(pT i, yi, µ)J

ω1
1 (µ)Jω2

2 (µ) . . . S1,2,...(Λ, µ)

• H(pT i, yi, µ) describes the hard scattering process at high energy

• Jω1 (Er, µ) describes the probability of having the amount of energy Er inside the
cone of size r

• S1,2,...(Λ, µ) describes how soft radiation is constrained in measurements

• The factorization theorem has a product form instead of a convolution
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Factorization theorem for jet shapes (continued)

The averaged energy inside the cone of size r in jet 1 is the following,

〈Er〉ω =
1

dσ
dpT idyi

∫

dErEr
dσ

dpT idyidEr
=

H(pT i, yi, µ)J
ω1
E,r1

(µ)Jω2
2 (µ) . . . S1,2,...(Λ, µ)

H(pT i, yi, µ)J
ω1
1 (µ)Jω2

2 (µ) . . . S1,2,...(Λ, µ)
=

Jω1
E,r1

(µ)

Jω1
1 (µ)

• JωE,r(µ) =
∫

dErErJω(Er, µ) is referred to as the jet energy function

• Nice cancelation between the hard, "unmeasured" jet and soft functions

• The integral jet shape, averaged over all jets, is the following

〈Ψ〉 =
1

σtotal

∑

i=q,g

∫

PS
dpT dy

dσ

dpT dy
Ψi

ω , whereΨω =
JE,r(µ)/J(µ)

JE,R(µ)/J(µ)
=

JE,r(µ)

JE,R(µ)
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Factorization theorem for jet mass(Chien et al)
• The cross section differential in photon pT , y, and jet mass m can be first

factorized as a convolution with parton distribution functions

d2σ

dpT dydm2
=

2

pT

∑

ab

∫

dvdw x1fa(x1, µ) x2fb(x2, µ)
d2σ̂

dwdvdm2
,

where

x1 =
1

w

pT

ECMv
ey, x2 =

pT

ECM(1− v)
e−y

• The partonic cross section can be further factorized in SCET as a convolution of
the hard, jet and soft function

d2σ̂

dwdvdm2
= w σ̂(v) H(pT , v, µ)

∫

dkindkoutdp2J(p2, µ)S(kin, kout, µ)

×δ(m2 − p2 − 2EJkin)δ(m2
X − m2 − 2EJkout)

where m2
X = (pJ + kin + kout)2 is the partonic mass of the event

n1 n2

nJ

γ

pJkin

kout
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Scale hierarchy and renormalization group evolution

µjR ≈ EJ × R

µjr ≈ EJ × r

µ

H J
EJ

m

µ

m2

EJR

SoutSin

EJR

• Each factorized piece O captures physics at
certain characteristic scale µO

• The renormalization group evolution between
characteristic scales resums the logs of the scale
ratios

µ
dO

dµ
= γOO

• The anomalous dimension γO can be
calculated order-by-order in perturbation
theory

• log r/R = logµjr/µjR
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Results for jet shapes
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• Compare with CMS pp data at 2.76 and 7
TeV

• The difference for jets reconstructed using
different jet algorithms is of O(r/R)

• Bands are theory uncertainties estimated
by varying µjr and µjR

• In the region r ≈ R we may need higher
fixed order calculations and include power
corrections
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• NLL, anti-kT , R = 0.7

• For low pT jets, power corrections
have significant contributions
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Results for jet mass

PYTHIA with hadronization

PYTHIA w�o hadronization

pT = 500 GeV, R= 0.5
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• The most precise analytic calculation of jet mass
distributions to date

• Agree nicely with PYTHIA partonic calculation
within theoretical uncertainty

• Comparison with data will be performed

• Hadronization effect plays a role as shown in
PYTHIA simulations

• Analytic study of nonperturbative soft matrix
element will be included

• Jet radius dependence correctly captured
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Multiple scattering in a medium

• Coherent multiple scattering and
induced bremsstrahlung are the
qualitatively new ingredients in
the medium parton shower

• Interplay between several
characteristic scales:

• Debye screening scale µ
• Parton mean free path λ
• Radiation formation time τ

µ

∆Z L

• From thermal field theory and lattice QCD
calculations, an ensemble of quasi particles with
debye screened potential and thermal masses is a
reasonable parameterization of the medium
properties

1

σel

dσel

d2q⊥
=

µ2

π(q2
⊥

+ µ2)2
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SCET with Glauber gluons (SCETG)

• Glauber gluon is the relevant mode for medium interactions

• SCETG was constructed from SCETbottom up (Idilbi et al,
Vitev et al)

• Glauber momentum scales as pG : Q(λ2, λ2, λ)
• Glauber gluons are off-shell modes providing

momentum transfer transverse to the jet direction
• Glauber gluons are treated as background fields

generated from the color charges in the QGP
• Glauber gluons interact with both the collinear and the

soft modes

• Given a medium model, we can use SCETG to consistently
couple the medium to jets

QCD

SCETG

Soft

n n̄

Glauber
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Medium-induced splitting

• The hierarchy between τ and λ determines the
degree of coherence between multiple scatterings

τ =
x ω

(q⊥ − k⊥)2
v.s. λ

∆z

ω, x, k⊥

q⊥

• Medium-induced splitting functions were calculated using SCETG (Ovanesyan et al)

dNmed
q→qg

dxd2k⊥
=

CFαs

π2

1

x

∫ L

0

d∆z

λ

∫

d2q⊥
1

σel

dσel

d2q⊥

2k⊥ · q⊥
k2
⊥
(q⊥ − k⊥)2

[

1− cos
( (q⊥ − k⊥)2∆z

xω

)]

•
dNmed

dxd2k⊥
→ finite as k⊥ → 0: the Landau-Pomeranchuk-Migdal effect
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Jet shapes in heavy ion collisions (continued)

• Jet shapes get modified through the modification of jet energy functions

Ψ(r) =
Jvac

E,r + Jmed
E,r

Jvac
E,R + Jmed

E,R

=
Ψvac(r)Jvac

E,R + Jmed
E,r

Jvac
E,R + Jmed

E,R

• Large logarithms in Ψvac(r) = Jvac
E,r/Jvac

E,R have been resummed
• There are no large logarithms in Jmed

E,r due to the LPM effect
• The RG evolution of medium-modified jet energy functions is unchanged

• However, with the use of small R’s in heavy ion collisions, there is significant jet
energy loss which leads to the suppression of jet production cross sections

• Jet-by-jet shapes are averaged with the jet cross sections

1

〈Nbin〉

dσk
CNM

dηdpT
=

∑

ijX

∫

dx1dx2f A
i (x1, µCNM)f A

j (x2, µCNM)
dσij→kX

dx1dx2dηdpT

1

〈Nbin〉

dσi
med

dηdpT

∣

∣

∣

∣

∣

pT

=
1

〈Nbin〉

dσi
CNM

dηdpT

∣

∣

∣

∣

∣ pT
1−ǫi

1

1− ǫi

• With cold nuclear matter effects in nuclear parton distributions
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Results

ALICE
ATLAS

CMS
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• The plots are the ratios between the jet cross sections and differential jet shapes
in lead-lead and proton collisions

• Jet shapes are insensitive to cold nuclear matter effects

• Gluon jets are more suppressed which increases the quark jet fraction

• Jet-by-jet the shape is broadened
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Results

ATLAS
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• The plots shows the dependence of jet cross section suppressions on centrality,
jet rapidity and jet radius
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Results

sNN = 5.10 TeV
R = 0.4, È Η È < 2
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• Predictions for jet shapes and cross sections at 5 TeV for inclusive and
photon-tagged jets
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Conclusions

• Jet substructure in proton and heavy ion collisions can be calculated within the
same framework

• Promising agreement with data and simulations and phenomenological
applications

• Stay tuned before Hard Probes 2016 for pA and AA jet fragmentation
function and jet mass distribution

• The modification of jet substructure is a combination of cross section suppression
and jet-by-jet broadening

• Power counting jet observables is useful and insightful. Give it a try!
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Outlooks

ParticleNuclear

Condensed Matter

Heavy Ion
SCET

• The physics of heavy ion collisions is a
multi-disciplinary subject

• The study of jet quenching is a unique
opportunity to probe non-perturbative QCD
physics with perturbative objects

• Effective field theory techniques can make

important contributions

H J
EJ

m

µ

m2

EJR

SoutSin

EJR

T
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Outlooks

We welcome discussions and requests for calculations

Thank you
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